首页
Python
Java
前端
数据库
Linux
Chatgpt专题
开发者工具箱
2023neck专题
YOLOv5改进 | 2023Neck篇 | 利用Gold-YOLO针对小目标进行检测(附完整修改教程 + 代码)
一、本文介绍 本文给大家带来的改进机制是Gold-YOLO利用其Neck改进v8的Neck,GoLd-YOLO引入了一种新的机制——信息聚集-分发(Gather-and-Distribute, GD)。这个机制通过全局融合不同层次的特征并将融合后的全局信息注入到各个层级中,从而实现更高效的信息交互和融合。这种方法增强了模型的颈部(neck)信息融合能力(有点类似于长颈鹿的脖子该Neck部分很长
阅读更多...
YOLOv8改进 | 2023Neck篇 | 利用Gold-YOLO改进YOLOv8对小目标检测
一、本文介绍 本文给大家带来的改进机制是Gold-YOLO利用其Neck改进v8的Neck,GoLd-YOLO引入了一种新的机制——信息聚集-分发(Gather-and-Distribute, GD)。这个机制通过全局融合不同层次的特征并将融合后的全局信息注入到各个层级中,从而实现更高效的信息交互和融合。这种方法增强了模型的颈部(neck)信息融合能力(有点类似于长颈鹿的脖子该Neck部分很长)
阅读更多...
YOLOv5改进 | 2023Neck篇 | CCFM轻量级跨尺度特征融合模块(RT-DETR结构改进v5)
一、本文介绍 本文给大家带来的改进机制是轻量级跨尺度特征融合模块CCFM(Cross-Scale Feature Fusion Module)其主要原理是:将不同尺度的特征通过融合操作整合起来,以增强模型对于尺度变化的适应性和对小尺度对象的检测能力。我将其复现在YOLOv5上,发现其不仅能够降低GFLOP,同时精度上也有很大幅度的提升mAP大概能够提高0.05左右,相对于BiFPN也有一定幅度
阅读更多...
YOLOv8改进 | 2023Neck篇 | 轻量级跨尺度特征融合模块CCFM(附yaml文件+添加教程)
一、本文介绍 本文给大家带来的改进机制是轻量级跨尺度特征融合模块CCFM(Cross-Scale Feature Fusion Module)其主要原理是:将不同尺度的特征通过融合操作整合起来,以增强模型对于尺度变化的适应性和对小尺度对象的检测能力。我将其复现在YOLOv8上,发现其不仅能够降低GFLOPs(成功添加之后,不引入任何其它模块GFLOPs降低至7.3),同时精度上也有很大幅度的提升
阅读更多...
YOLOv8改进 | 2023Neck篇 | 利用RepGFPN改进特征融合层(附yaml文件+添加教程)
一、本文介绍 本文给大家带来的改进机制是Damo-YOLO的RepGFPN(重参数化泛化特征金字塔网络),利用其优化YOLOv8的Neck部分,可以在不影响计算量的同时大幅度涨点(亲测在小目标和大目标检测的数据集上效果均表现良好涨点幅度超级高!)。RepGFPN不同于以往提出的改进模块,其更像是一种结构一种思想(一种处理事情的方法),RepGFPN相对于BiFPN和之前的FPN均有一定程度上的优
阅读更多...